شاركنا تاريخ ميلادك!
تاريخ الميلاد
تاريخ الميلاد المدخل غير مكتمل يرجى ادخال تاريخ ميلاد صحيح
×
السلعة غير متوفرة حاليا
The Elements Of Statistical Learning
كن أول من يقيِّم هذا المنتج 
×
تفقد سلع أخرى متوفرة سلع أخرى متوفرة

إعلانات مُموَّلة لك

معلومات المنتج

  •  

    المواصفات

    رقم ال ISBN
    9780387848570.0
    الفئات
    علوم الكمبيوتر
    الرقم المميز للسلعة
    2724330359802
    المؤلفين
    الكاتب
    Trevor Hastie 
    المؤلفين
    الناشر
    Springer
    رقم ال ISBN
    9780387848570.0
    الفئات
    علوم الكمبيوتر
    الرقم المميز للسلعة
    2724330359802
    المؤلفين
    الكاتب
    Trevor Hastie 
    المؤلفين
    الناشر
    Springer
    اللغات والبلدان
    لغة الكتاب
    الانجليزية
    إقرأ المزيد
  •  

    الوصف:

    During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the

    During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book.

    This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for ``wide'' data (p bigger than n), including multiple testing and false discovery rates.

 

تقييمات المستخدمين

0
لا يوجد تقييمات بعد
كن أول من يقيِّم هذا المنتج
قيِّم هذا المنتج:

×

الرجاء تأكيد رقم هاتفك الجوال لإكمال عملية الشراء

سنقوم بإرسال رسالة نصية تحتوي على رمز التفعيل، الرجاء التأكد من رقم هاتفك الجوال ادناه، ثم انقر على زر "أرسل رمز التفعيل".