Let us wish you a happy birthday!
Date of Birth
Please fill in a complete birthday Enter a valid birthday
×
This item is currently out of stock
Machine Learning Models And Algorithms For Big Data Classification
Be the first to rate this product 
×
Check Products in stock Products in stock

Sponsored products for you

PRODUCT INFORMATION

  •  

    Specifications

    Category Type
    Business Strategy
    ISBN
    9781489976406.0
    Item EAN
    2724330357198
    People
    Author
    Shan Suthaharan
    People
    Publisher
    Springer International Publishing AG
    Category Type
    Business Strategy
    ISBN
    9781489976406.0
    Item EAN
    2724330357198
    People
    Author
    Shan Suthaharan
    People
    Publisher
    Springer International Publishing AG
    Languages and countries
    Book Language
    English
    Read more
  •  

    Description:

    This book presents machine learning models and algorithms to address big data classification problems. Existing machine learning techniques like the decision tree (a hierarchical approach), random forest (an ensemble hierarchical approach), and deep learning (a layered approach) are highly suitable

    This book presents machine learning models and algorithms to address big data classification problems. Existing machine learning techniques like the decision tree (a hierarchical approach), random forest (an ensemble hierarchical approach), and deep learning (a layered approach) are highly suitable for the system thAt can handle such problems. This book helps readers, especially students and newcomers to the field of big data and machine learning, to gain a quick understanding of the techniques and technologies; therefore, the theory, examples, and programs (Matlab and R) presented in this book have been simplified, hardcoded, repeated, or spaced for improvements. They provide vehicles to test and understand the complicated concepts of various topics in the field. It is expected thAt the readers adopt these programs to experiment with the examples, and then modify or write their own programs toward advancing their knowledge for solving more complex and challenging problems.


    The presentation formAt of this book focuses on simplicity, readability, and dependability so thAt both undergraduate and graduate students as well as new researchers, developers, and practitioners in this field can easily trust and grasp the concepts, and learn them effectively. It has been written to reduce the mathematical complexity and help the vast majority of readers to understand the topics and get interested in the field. This book consists of four parts, with the total of 14 chapters. The first part mainly focuses on the topics thAt are needed to help analyze and understand data and big data. The second part covers the topics thAt can explain the systems required for processing big data. The third part presents the topics required to understand and select machine learning techniques to classify big data. Finally, the fourth part concentrates on the topics thAt explain the scaling-up machine learning, an important solution for modern big data problems

 

Customer Reviews

0
No ratings yet
Be the first to rate this product
Rate this product:

×

Please verify your mobile number to complete your checkout

We will send you an SMS containing a verification code. Please double check your mobile number and click on "Send Verification Code".

+ Edit